
Identifying Conditions for Effective
Communication with Just Enough

Documentation in Continuous Software
Development

Theo Theunissen

HAN University of Applied Sciences, Arnhem, the Netherlands
Theo.Theunissen@han.nl

Abstract. Modern development methods like Lean, Agile, and DevOps
have characteristics in common concerning avoiding waste, delivering
working software, and continuous delivery. We call these collective meth-
ods Continuous Software Development (CSD). Additionally, we take into
account the full lifecycle of software development, including continuous
architecting and operations. Typically, in CSD processes, one can observe
a lower amount of documentation as well as a lower quality of process-
internal information. Stakeholders start development with just enough,
and informal, documentation through sketches. In combination with face-
to-face communication, this is considered sufficient. Nevertheless, having
no documentation at all is not an option. Developers and other stake-
holders at least require a minimal amount of documentation which is of
acceptable quality. In addition, information is scattered throughout tools
in the software development ecosystem. An investigation is therefore con-
ducted as to how this information can be organized into comprehensible
documentation. The contribution of this research project primarily con-
sists of an empirically validated and theoretically founded documentation
framework that is streamlined for CSD.

Keywords: Agile · Continuous Software Development · DevOps · Doc-
umentation · Lean

1 Introduction

In recent years, we have seen widespread adoption of software development meth-
ods like Lean, Agile and DevOps. The term Continuous Software Development
(CSD) is used to collectively refer to these software development methods, cov-
ering the entire development lifecycle. The main characteristics of CSD are:

1. It covers values, principles, practices, tools, and processes from Lean [15],
Agile [5] and DevOps [9].

2. It covers all phases of the software development lifecycle, from concept to
end-of-life. Lean [15] and Agile [5] typically focus on the project phases,

Copyright © 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).



2 T. Theunissen

excluding operations and maintenance. With respect to DevOps [9], it in-
cludes continuous software architecting activities. We consider software-as-
a-product, in view of which development, operations, and maintenance con-
tinue until retirement of the software-as-a-product.

3. Continuity refers to the continuously changing state of the architecture,
software, operations, processes, and management because of progressive in-
sights of the stakeholders, bug fixes, and continuously changing context: even
keeping the software unchanged in a changing context results in additional
requirements or other unforeseen factors.

4. Information is distributed across tools used in the software develop-
ment ecosystem. There rarely is a single repository in which information is
stored for a system. Furthermore, documentation includes a big variety of
structured and unstructured data like texts, as in git commit messages, pho-
tos from whiteboard sketches, diagrams with Unified Modeling Language
(UML) models or Entity-Relationship-Diagrams (ERDs), and executable
scripts as used in Test Driven Development (TDD).

5. The amount of documentation and quality of documentation is low.
In Lean, documentation is considered to be waste when it does not directly
contribute to the end product [15]. In Agile [5] software development, work-
ing software is valued over comprehensive documentation, and face-to-face
communication is considered much more effective than written documenta-
tion. In DevOps, CI/CD scripts are considered to be documentation with
infrastructure-as-code [9].

Documentation is the central aspect we focus on here because on the one hand,
we observe a fundamental mismatch between the amount and quality of docu-
mentation that is produced and consumed [20, 21]. On the other hand, having
no documentation at all is not a viable possibility. Developers and other stake-
holders require a minimal amount and quality of documentation because of the
continuity of development until retirement of the software-as-a-product. Our re-
search project contributes insights on what is just enough documentation for
developers and other stakeholders throughout the beginning, continuation and
finalization of the software-as-a-product lifecycle. Second, it contributes insights
on how structured and unstructured information that is scattered across the
software development ecosystem can be transformed into comprehensible docu-
mentation.

In this paper we present types of information (the what) in Section 2 and
reasons for documenting (the why) in Section 3. Previously, after a few prelimi-
nary studies [20–22], a literature review was conducted to search for publications
on documentation in CSD. Currently, we are in the process of conducting a case
study on necessary and sufficient conditions for gaining insight with respect to
control of effective communication through documentation in CSD, and on how
information that is scattered throughout the tools in the software development
ecosystem can be transformed into coherent and comprehensible documentation.
After the completion of this case study, the objective is to define a theoretical



Conditions for Communication with Just Enough Documentation in CSD 3

framework on documentation in CSD. The project will be concluded with an
empirical validation of the theoretical framework.

The contribution of the project to the scientific community is the following.
Although there are numerous studies on documentation on software develop-
ment, not much research has been done in Lean, Agile, and DevOps software
development methods (which have CSD characteristics). Our project at large
primarily aims to contribute a documentation framework that is streamlined for
CSD, creating the necessary and sufficient conditions for effective communication
with just enough documentation in CSD.

The remainder of this paper is organized as follows. In Section 2, the types of
information (the what) are described. Next, Section 3 provides a description of
reasons for documentation (the why). In Section 4 the study design is explained,
including research questions. The conclusion and ideas for future research are
presented in Section 5.

2 Types of Information

From a previous literature review on documentation practices, documentation
challenges, and tooling in CSD, we learned that the following relevant typology
of information can be distilled from the literature: We adapted the Constant

1. Activity:
Exploring full text

Fi
na

l r
es

ul
t s

et
w

ith
 s

tu
di

es

2. Activity:
Coding marked text

3. Activity:
Grouping keywords

4. Activity:
Identifying relations

Description:
Atlas.ti was uses to 

read the ful texts in the 
final set. Text was 
marked when it 

answered or 
contributed to an RQ. 
The result is a list of 

marked text.

Description:
Keywords were added 

to the marked that 
characterizes the 

fragment. The result is 
a list of keywords.

Description:
The keywords were 

grouped into 
categories. Categories 

are a higher 
(abstraction) of 

keywords. The result is 
a list of categories. 

Description:
Relations between the 

categories were 
identified. The result is 
a list of concepts with 

attributes.

Result:
Marked text

Result:
Keywords

Result:
Categories

Result:
Concepts

Fig. 1. Constant Comparative Method, adapted from Miles et al. [13]

Comparative Method from Miles et al. for the qualitative analysis of the lit-
erature review [13], as depicted in Figure 1. The list of information types was
compiled by first reading and marking all the text fragments in the studies. The
second step was to add keywords to the marked text. The third step was to group



4 T. Theunissen

the keywords into categories with similar meaning, for example when the docu-
mentation was created, or the intended use of the documentation. The last step
was to add relations between the categories to create concepts of information
types.

The types of information we identified, based on git documentation [1] and
on studies from Beck et al. [5], Bass [3], ISO/IEC documents [8, 19], Christensen
et al. [7], Bosch et al. [6], Poppendieck et al. [15], include:

1. Stakeholder concerns, risks, constraints, and context.
2. Requirements define what a system should do.
3. Specifications define how a system should work.
4. The source code itself.
5. Annotations in the source code.
6. Commit messages accompanied with source control management systems.
7. Playbooks, which are executable scripts for CI/CD pipelines.
8. Metrics list indicators of measurable features of processes, tasks, and sys-

tems.
9. Values and beliefs, principles, and practices in which values and beliefs can

be observed in behavior. We define principles as explicit rationalizations of
values and beliefs. Practices can be observed as recurrent actions.

10. Processes, procedures, and tools.
11. Knowledge, competences, and attitude.

Furthermore, the aspect of the medium of the information should be taken
into account. The medium concerns the way information is communicated [17,
18]. Traditionally in software development, written documentation was communi-
cated on paper and later replaced by digital documents. In CSD, verbal commu-
nication is prominently practiced, for instance in the daily stand-ups in Scrum.
This type of information is not written down in any way. At the end of team
meetings, knowledge literally walks out the door. Finally, since information is
scattered throughout (tools in) the development ecosystem, we should consider
software development tools also as a medium.

In this section, types of documentation (the what) were described. The items
in this list are the result of a literature review. Both the types of information and
the aspect of the medium were discussed. In the following section, we describe
the purposes for documentation in CSD.

3 Reasons for Documenting

In the literature review, we found that information about a system is scat-
tered throughout tools comprising a software development ecosystem [10]. We
found purposes for documentation in studies from Ambler [2], Laporte et al. [12],
Visković et al. [23] and Praks et al. [16]. The purposes are:

1. Providing project stakeholders with required documentation.
2. Definition of a contract model, such as a codified description of interfaces.



Conditions for Communication with Just Enough Documentation in CSD 5

3. Support of communication inside the team, especially larger teams.
4. Support of communication with external, geographically distributed, groups.
5. Support of organizational memory.
6. Auditing purposes.
7. Believing something to be true.
8. Reducing defects in working software.
9. Facilitating training.

In this section we listed reasons (the why) for documentation as described
in primary studies. The types of information presented in the previous section
combined with the reasons for documentation presented in this section form the
basis for the research questions proposed in the next Section.

4 Study Design

4.1 Objectives and Research Questions

The objective of this study is defined in the main research question:

What are the necessary and sufficient conditions to gain insight in, and
have control of, effective communication with just enough documentation
in Continuous Software Development (CSD)?

“Necessary conditions” refers to the minimal requirements for an event to occur.
“Sufficient conditions” make the event to actually occur. A necessary condition
alone is not sufficient. A simple example can make this clear. The necessary
conditions for fire are ‘air’, ‘fuel’ and ‘heat’. However, these necessary conditions
become sufficient for fire only when air, fuel and heat are in a specific configura-
tion. A simple example for a sufficient condition without being necessary is “you
traveled to Amsterdam by plane”, the plane being sufficient, but not necessary.
Insight refers to knowledge and facts that someone is aware of. Control refers
to the ability to change the course of events in certain directions. Insight is a
necessary condition for control. Effective communication refers to results that
could not have been achieved without sufficient information. Documentation in
CSD refers to the domain (scope) for this research. Making the necessary and
sufficient explicit helps in understanding which elements are required for con-
cepts like ‘insight’, ‘control’, ‘effective communication’, and ‘documentation in
CSD’ including the relations between these concepts. Additionally, the condi-
tions make explicitly clear how, why and when the concepts occur.

RQ1 What are reasons for documenting in CSD?

1. How do types of documentation (the what) and reasons for documenta-
tion (the why) match?
In Section 2 a list of what is documented was presented. When we ex-
tend these types of documentation with attributes, one of the attributes
could be the reason for documenting. In Section 3, we presented reasons



6 T. Theunissen

for documentation. However, the type of documentation (the what) and
reason for documenting (the why) have not yet been connected. In our
research project, we want to investigate what reason(s), found in related
literature, can be attributed to what type of documentation.

2. What are trade-offs for different types of industry and why they weigh
alternatives differently for documentation?
Bass et al. describe two trade-offs: fast time to-market and regulatory
business [4]. Examples of industries for fast time-to-market include so-
cial media websites and web shops. Examples for regulatory industry
include the Food and Drug Administration (FDA), and banking and tax
administration. This can easily be extended with other trade-offs such
as fast time-to-market and accountability, or agility and maturity. We
are looking specifically to types of industry that have high demands for
both alternatives.

3. Validation of the reasons that are found in the literature as presented
in Section 3 on reasons for documentation through the questioning of
experts in industry.

RQ2 What are necessary and sufficient conditions to organize information scat-
tered throughout a CSD ecosystem into comprehensible documentation?
1. Which tools are used in the software development ecosystem?

Kersten et al. present a wide range of tools and tool categories [10]. With
this research question we investigate the tools and tool categories in the
software development ecosystem. We also investigate how these tools are
used (for communication) in CSD.

2. What is the variety of the information that is stored in tools?
Variety refers to structured and unstructured information that is stored
in the tools. The information is of many kinds like texts such as in git
commit messages, photos from whiteboard sketches, diagrams with UML
or ERDs and executable scripts such as TDD.

3. Which information is stored with what tool?
In Section 2 on types of information, a list is presented of what is docu-
mented. With this research question, we investigate which tools or tool
categories are used to store what types of information.

4. How can this scattered information be organized into comprehensible
documentation?
Since the information is scattered throughout the tools that comprise
the software development ecosystem, the question is how this scattered
information leads, or can lead, to comprehensible documentation.

4.2 Research Project

Our research project at large is built up from a number of studies. Below, we
present the studies including objectives, and methods.

1. The first study is a literature review. The objective is to present an
overview of literature related for documentation practices and documen-



Conditions for Communication with Just Enough Documentation in CSD 7

tation challenges in CSD, and which tools are used in the software devel-
opment ecosystem of CSD. The period starts with the introduction of the
Agile Manifesto in 2001 and ends in 2019. The method for the literature
review is a Systematic Mapping Study (SMS) with elements from a System-
atic Literature Review (SLR). For the SMS methodology, we use Petersen
et al. ([14]), and for the SLR, we use Kitchenham et al. ([11]). We want to
present a broad overview of literature and to categorize this into dimensions.
We address broader research questions regarding the trends in documenta-
tion practices, challenges, and tools in CSD. The topic area is specific with
respect to documentation in CSD. The focus is on primary literature, and we
exclude secondary studies such as other literature reviews. Furthermore, the
topics of Lean, Agile and DevOps is very practitioner-oriented and at least
part of the studies are empirical, and therefore it is complicated to evalu-
ate the quality of primary studies. The result is an overview of literature in
a bubble chart, based on Wieringa et al., with dimensions for contribution
facets, context facets (related to research questions), and research facets [24].

2. The objective of the case study is to present an overview of observations
in the industry community for documentation practices and documentation
challenges in CSD, and which tools are used in the software development
ecosystem of CSD. The cases are, according to Yin et al., contemporary
phenomena in their real-life context [26]. The cases in this study concern
examples from industrial sectors that have high demands on agility and
reliability, e.g. fast time-to-market, because of competition or continuously
changing regulations such as web shops and tax administration. Some indus-
tries, however, have a high demand for accountability and transparency [4].

3. Based on the literature and case studies, we construct a theoretical frame-
work that is streamlined for documentation in CSD. With this framework
we provide the context, i.c. documentation in CSD, develop hypothesis to
explore the research, provide a framework with categories for observations,
define a concept, provide a research design, provide a model for interpre-
tations, and give generalizations. The framework serves as a guide to sys-
tematically identifying logical en causal relations among concepts. We will
use Wieringa’s Design Science [25] framework to construct the theoretical
framework.

4. The research project ends with a validation of the conceptual frame-
work in the industry. We will use both quantitative and qualitative methods
to evaluate the framework.

5 Conclusions and Future Research

We refer to CSD as a set of common characteristics from Lean, Agile, and
DevOps. CSD includes activities from the complete lifecycle of software-as-a-
product: continuous architecting, operations, and maintenance. In CSD, there is
less documentation and in general this documentation is of low quality. We con-
sider a mismatch between the production and consumption of documentation on



8 T. Theunissen

the one hand, while on the other hand there is a need for a minimal amount of
documentation for developers and other stakeholders to start, continue, and end
the software-as-a-product lifecycle. In this paper we presented types of informa-
tion (the what) and reasons for documenting (the why), together with research
questions for further research. In future research we will set out to investigate
how types of information and reasons for documenting match. We also want to
find out to what extent the requirements differ for the various types of industry,
such as fast time-to-market and heavily regulated organizations.

We observed that information in CSD is scattered throughout the software
development ecosystem. We are therefore interested in how this scattered infor-
mation can be transformed into comprehensible documentation for developers
and other stakeholders.

Future research includes the construction of a theoretical documentation
framework that is streamlined for CSD. The final objective is to validate the
documentation framework in the industry. This framework provides the nec-
essary and sufficient conditions for effective communication with just enough
documentation in CSD.

Acknowlegements I would like to thank the supervisors of this Ph.D. project,
which are: Prof. Dr. Sjaak Brinkkemper, Dr. Stijn Hoppenbrouwers, and Dr.
Sietse Overbeek for their reviews and support of this paper.

References

1. Gitcommitmessages - openstack. https://wiki.openstack.org/wiki/GitCommitMessages
2. Ambler, S.W.: Agile/lean documentation: Strategies for agile software develop-

ment. http://agilemodeling.com/essays/agileDocumentation.htm
3. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-

Wesley Professional (2003)
4. Bass, L., Weber, I., Zhu, L.: DevOps: A software architect’s perspective. Addison-

Wesley Professional, 1st edn. (2015)
5. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Mar-
tin, R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Ag-
ile Software Development Twelve Principles of Agile Software. Tech. rep. (2001),
http://www.agilemanifesto.org

6. Bosch, J.: Continuous software engineering: An introduction, vol.
9783319112. Springer (2014). https://doi.org/10.1007/978-3-319-11283-1-1,
http://link.springer.com/chapter/10.1007/978-3-319-11283-1 1

7. Christensen, H.B., Hansen, K.M.: Towards architectural information in implemen-
tation. In: Proceeding of the 33rd international conference on Software engineering
- ICSE ’11. p. 928 (2011). https://doi.org/10.1145/1985793.1985948

8. Engineering, S., Committee, S.: IEEE Recommended Prac-
tice for Software Requirements Specifications, vol. 1998 (1998),
http://www.math.uaa.alaska.edu/ afkjm/cs401/IEEE830.pdf

9. Hüttermann, M.: Infrastructure as code. In: DevOps for Developers, pp. 135–156.
Springer (2012)



Conditions for Communication with Just Enough Documentation in CSD 9

10. Kersten, M.: A cambrian explosion of DevOps tools. IEEE Software 35(2), 14–17
(2018). https://doi.org/10.1109/MS.2018.1661330

11. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature
Reviews in Software Engineering. Engineering 2(4ve), 1051 (2007)

12. Laporte, C.Y., April, A.: Policies, Processes, and Procedures (2018)
13. Miles, M.B., Huberman, A.M.: Qualitative data analysis: An expanded sourcebook,

2nd ed. Sage Publications, Inc, Thousand Oaks, CA, US (1994)
14. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic Mapping Studies in

Software Engineering. 12Th International Conference on Evaluation and Assess-
ment in Software Engineering 17, 10 (2008)

15. Poppendieck, M., Poppendieck, T.: Lean software development: an agile toolkit.
Computer 36(8), 89–89 (2003). https://doi.org/10.1109/MC.2003.1220585

16. Praks, J., Tikka, T., Kestilä, A., Hieta, M.: Online documentation approach for
assisted system engineering and assessment in student projects. In: 2015 IEEE
Global Engineering Education Conference (EDUCON). pp. 608–611. IEEE (2015)

17. Rodŕıguez-Elias, O.M., Mart́ınez-Garćıa, A.I., Vizcáıno, A., Favela, J., Piattini,
M.: A framework to analyze information systems as knowledge flow facilitators.
Information and Software Technology 50(6), 481–498 (2008)

18. Shannon, C.E., Weaver, W.: The mathematical theory of communication, 117 pp.
Urbana: University of Illinois Press (1949)

19. Standards Committee: IEEE Std 1016-2009 (Revision of IEEE Std 1016-1998),
IEEE Standard for Information Technology—Systems Design—Software Design
Descriptions, vol. 2009 (2009). https://doi.org/10.1109/IEEESTD.2009.5167255

20. Theunissen, T., van Heesch, U.: The Disappearance of Technical Specifications in
Web and Mobile Applications. In: Software Architecture: 10th European Confer-
ence, ECSA 2016, Copenhagen, Denmark, November 28–December 2, 2016, Pro-
ceedings 10, vol. 9839 LNCS, pp. 265–273. Springer, Cham (nov 2016)

21. Theunissen, T., Van Heesch, U.: Specification in Continuous Software Develop-
ment. In: Proceedings of the 22nd European Conference on Pattern Languages of
Programs. p. 5. EuroPLoP ’17, ACM, ACM, New York, NY, USA (2017)

22. Van Heesch, U., Theunissen, T., Zimmermann, O., Zdun, U.: Software Spec-
ification and Documentation in Continuous Software Development. Proceed-
ings of the 22nd European Conference on Pattern Languages of Programs
- EuroPLoP ’17 pp. 1–13 (2017). https://doi.org/10.1145/3147704.3147742,
http://dl.acm.org/citation.cfm?doid=3147704.3147742

23. Visković, D., Varga, M., Ćurko, K.: Bad practices in complex IT projects. Proceed-
ings of the International Conference on Information Technology Interfaces, ITI pp.
301–306 (2008). https://doi.org/10.1109/ITI.2008.4588425

24. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requirements
Engineering 11(1), 102–107 (2006). https://doi.org/10.1007/s00766-005-0021-6

25. Wieringa, R.J.: Design science methodology for information systems and software
engineering. Springer (2014)

26. Yin, R.: Case Study Research: Design and Methods, 3rd Edition (Applied So-
cial Research Methods, Vol. 5). Sage Publications, Inc., third edit edn. (2002).
https://doi.org/10.1086/421629


