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Abstract

After a short introduction to the well-known paradox of Achilles and the tortoise, 
originating from the 5th century B.C. and attributed by both Plato and Aristotle to 
Zeno of Elea, we present an overview of important solutions and discussion themes 
of the paradox, using only basic mathematics. In addition to the limit solution, 
based on Cauchy’s limit concept, a simpler but less well-known geometric solution 
is provided. This yields not only the exact distance but also the exact amount of 
time that Achilles needs to pass the tortoise. Subsequently, we discuss the philo-
sophical background of the paradox. In particular, what Zeno wanted to prove with 
the paradox and how Aristotle in his criticism foreshadowed both the limit and the 
geometric solution. Next, the paradox is placed in the perspective of modern quantum 
theory. This leads to the replacement of classic continuous spacetime by ‘granular’ 
spacetime and to a new discrete solution of the paradox in terms of granular spa-
cetime. Finally, the problem of supertasks in addition to other topics related to the 
paradox are dealt with.
Keywords: continuous spacetime, discrete solution, geometric solution, granular 
spacetime, limit solution, passing the tortoise, quantum theory

1. Introduction

The paradox of Achilles and the tortoise is one of several paradoxes 
formulated by Zeno of Elea in the 5th century B.C. in support of the doc-
trine of his master Parmenides and it is Zeno’s most well-known paradox. 
It features a footrace between Achilles, a popular runner in antiquity, and a 
tortoise. The essence of the paradox is that, if Achilles allows the tortoise 
a certain head start, he will never be able to catch up with it. Each time 
Achilles covers the distance between himself and the tortoise, the tortoise 
has already run a new distance that should next be covered by Achilles. 
This cycle can be repeated an infinite number of times, with the result that 
Achilles will never pass the tortoise. Until way beyond the Middle Ages, 
the cleverest people dedicated their best efforts to bridge this infinity gap. 
It took almost 2300 years before the paradox was satisfactorily solved by 
means of the limit concept, which Augustin-Louis Cauchy used to lend a 
firm basis for Newton’s and Leibniz’s calculus.
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The purpose of the article is to present essential solutions and discussion 
themes of the paradox, using basic mathematics only. Because the literature 
about Zeno and his paradoxes is immense and every year no less than 150 
new publications are added, no attempt can be and is made to be complete. 
In addition to a simple version of the limit solution, a second geometric 
solution is presented, which is even simpler and enables one not only to 
calculate the exact distance but also the exact time Achilles needs to catch 
up with the tortoise. The relationship between these two historic solutions 
is clarified and the philosophical background of the paradox discussed, 
in particular the way Aristotle handled the paradox. Next, we consider the 
paradox from the perspective of modern quantum theory, resulting in a third 
discrete solution, which instead of in classic continuous spacetime is staged 
in so-called ‘granular’ spacetime. This and the popular topics of supertasks 
and infinity machines in the final section show how relevant Zeno’s thinking 
still is for modern physics and philosophy. Bertrand Russell evaluated in 
1914: “Zeno’s arguments, in some form, have afforded grounds for almost 
all the theories of space and time and infinity which have been constructed 
from his day to our own” (Russell 1914, p. 54). No doubt Russell’s words 
will continue to be true for many years to come.

2. Historic solutions in continuous spacetime

2.1. Limit solution

To analyze Zeno’s reasoning and where it missed the point, a few simple 
arithmetic facts need to be considered first. It is quite straightforward that 
the sequence of numbers

 1, v, v2, v3, …, vn−1 (1)

(e.g., 1, 3, 9, 27, 81 for v = 3 and n = 5), when added, results in the series

 1 + v + v2 + v3 + … + vn−1 = 1 – vn

1 − v   (2)

(multiply the sum by 1 − v to find 1 − v n) and next leads to

 s + sv + sv2 + sv3 + … + svn−1 = s 1 – vn

1 − v  (3)

To solve the paradox we need only one more result. If we allow n to go to 
infinity (n → ∞), this quantity converges to limit

 s 
1

1 − v  (4)
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for all values of v < 1. If v is smaller than 1, then vn approaches 0, allow-
ing us to write s 1

1 − v  as limiting value of s 1 – vn

1 − v . The term limit indicates 
that the limiting value is not actually reached but only approximated, in 
steps with s 1 – vn

1 − v  becoming increasingly closer to s 1
1 − v  (expressed as 

s 1 – vn

1 − v  → s 1
1 − v ) as we let n increase stepwise to infinity (n → ∞).

covered
distance

step

∞1 2 3 4 . . .

111
110

100

111.1111...111.1

Figure 1: In the limit solution the number of added head-starts increases in steps 
to ∞ but the total distance covered cannot exceed s/(1 − v) = 111.1111 … 

meters. This is the distance at which Achilles catches up with the tortoise in the 
example with s = 100 meters as the first head-start of the tortoise and with its 

speed being v = 0.1 of Achilles’ speed. Starting with 100 meters in step 1, each 
following step adds a 1 before or after the decimal point but this keeps the total 

within the limit of 111.1111 … meters.

Now, let us apply the arithmetic facts in the previous paragraph to solve 
the paradox. Suppose that the tortoise only runs v < 1 times as fast as 
Achilles and Achilles therefore runs 1/v times as fast as the tortoise (e.g., 
the tortoise having only v = 0.1 of the speed of Achilles and, consequently, 
Achilles is 1/v = 10 times as fast as the tortoise). In addition, at the start, 
the tortoise has a head start of s = 100 meters. When Achilles covers the  
s = 100 meters distance, the head start of the tortoise shrinks to sv = 10 
meters, and when Achilles next covers this, shrinkage is to sv2 = 1 meters 
and so on. We can go on until infinity. Added in the series, however, accor- 
ding to the limit above, the head starts in total cannot exceed s 1

1 − v  = 
100 1

1 − 0.1  = 111.1111 … meters. In each step a 1 before or after the comma 
is added but clearly the total will never exceed 112 meters. Therefore, Achilles 
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will pass the tortoise in less than 112 meters, in contrast to what Zeno of 
Elea claims (see Figure 1). His paradox mistakenly interprets n as time. 
However, n does not stand for a fixed interval of time and does not go to 
an infinitely far away point in time. It increases in steps to ∞ over a rela-
tively short, calculable period of time. The number of steps goes to infinity, 
but neither the distance nor the elapsed time does. The next solution will 
yield both distance and period of time required.

2.2. Geometric solution

The geometric solution specifies two simple linear equations: one for 
Achilles and one for the tortoise. If we assume that Achilles maintains 
a constant speed and, for the moment, we take 1 time unit as the time he 
needs to cover 1 distance unit (1 meter in the example above), then the 
period of time becomes s 1

1 − v . For example, when the time unit is 1 second, 
then it becomes s 1

1 − v  seconds as a result. This can be seen as follows. Let 
pA in the first equation for Achilles

 pA = t (5)

be the position reached by Achilles during the time interval t (as many 
distance units as time units), and pT in the second equation for the tortoise

 p T = s + vt (6)

the position reached by the tortoise during the same time interval. Clearly, 
the tortoise has a head start s and runs only v times as fast as Achilles, that 
is, covers only vt during the time Achilles covers t. To find the period t 
they need to reach the same position, we equate the positions and call this 
same position p : pA = p T = p. In the first equation, this produces p = t, and 
in the second equation, because p T = p = t (the position of the tortoise being 
equal to the one of Achilles which is t according to the first equation),  
t = s + vt or (1 − v) t = s. Therefore, the period of time required becomes 
t = s 1

1 − v , that is, equal to the distance that Achilles needed in the limit 
solution and is needed also in the present solution to pass the tortoise. If 
it takes Achilles 1 second to cover 1 meter, then he passes the tortoise in 
111.1111 … seconds, that is slightly less than 1.852 minutes.

Suppose, however, it takes him only half a second to cover 1 meter, then 
the time required becomes half this value, namely 0.926 minutes. In general, 
the period of time can be written as

 s 1
1 − v

 b (7)
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if Achilles takes b time units to cover 1 distance unit. See Figure 2 for a 
graphical representation. It should be noted that in the case of b ≠ 1, where 
Achilles needs b ≠ 1 time units to cover 1 distance unit, time should first 
be divided by b to determine the distance covered: t / b instead of t. Because 
b is the number of time units needed per distance unit, 1/b or the number of 
distance units per time unit is Achilles’ speed. v/b is the speed of the tor-
toise, because the tortoise is v times as fast as Achilles. Note also that for 
the calculation of the crossing point between the two linear curves, s 1

1 − v , 
that is the distance at which they meet, the value of b does not matter, 
because filling in time period s  1

1 − v  b for t in the equations p = t / b and 
p = s + v(t / b) results in p = s  1

1 − v  once again. So, it is only the head start 
s and the relative speed v between both that determine the meeting distance.

Figure 2: In the geometric solution, Achilles and the tortoise each have their own 
equation (linear curve) for the relationship between time and distance covered, 
which cross at the point where they pass: s/(1 − v) = 111.1111 … (for s = 100 

and v = 0.1). This point is reached at the end of time period [s/(1 − v)]b, where b 
is the number of time units Achilles needs to cover 1 distance unit.
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The geometric solution by means of the two linear equations p = t 
and p = s + vt or, in case b ≠ 1, p = (1/b)t and p = s + (v/b)t in two 
unknowns (p  and t) is simpler than the series approach used in the limit 
solution. Both show where Achilles catches up with the tortoise, but the 
series approach reveals more clearly where the argumentation of the para-
dox goes wrong. Specifically, the number of steps in Zeno’s reasoning 
indeed goes to infinity (increases without bound), but the result nonetheless 
remains within a finite distance and period of time. An important difference 
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Figure 3: In the combined solution (shown here for the example s = 100,  
v = 0.5), the crossing point 200 of the linear curves pA and p T of Achilles and 

the tortoise is also the limit of the distance which each of them runs in steps. The 
distances indicated on the curves are found by alternating pA(i) = p T (i − 1) and 
p T (i) = s + vpA(i): in each step Achilles runs what the tortoise has run in the 
previous step (horizontal curves) and the tortoise runs his head start s plus, in 

lower speed v, what Achilles has run. The vertical curves provide the successive 
distance differences between tortoise and Achilles (head starts of the tortoise):  

s = 100 at the very beginning and next sv = 50, sv2 = 25, sv3 = 12.5, sv4 = 6.25, etc. 
The difference reduces to 0 when approaching limit 200.

between the two solutions is that the crossing point of the two curves in 
Figure 2 is a specific value that can be calculated directly, while a limit is 
mathematically more complex. Every n corresponds to one specific value 
of the series and every higher n corresponds to a value closer to the limit, 
but for the very limit itself there is no n to calculate the value.

2.3. Putting limit and geometric solution together

Although both solutions are mathematically different, by combining 
them Figure 3 clarifies their relationship and provides a detailed picture of 
how the distance between Achilles and the tortoise develops across time. pT 
and pA in Figure 2 and Figure 3 are continuous variables, meaning that the 
differences between the values on both the pT-scale and the pA-scale can be 
regarded as infinitely small. If we start with the head start p T (0) = s of the 
tortoise, which we let Achilles run in step 1, pA (1) = p T (0) = s, we obtain 
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for the tortoise in step 1 the distance pT (1) = s + vpA (1) = s + vs. We then 
put this value on the pA-scale again: pA (2) = p T (1). By alternating

 pA (i) = p T (i − 1) (8)

and
 p T (i) = s + vpA (i) (9)

we find as successive differences between the values p T (i) and pA(i) on 
both scales

 s, vs, v2 s, v3 s, …, v n−1 s (10)

Thus

 p T
 (i) – pA (i) = pA (i + 1) – pA(i) = p T (i) – p T (i – 1) = vis (11)

and added across time we find as shown earlier

 s + vs + v2s + v3s + … + vn–1s = s 1 – vn

1 − v  (12)

The terms s, vs, v2s, v3s, …, vn−1s in the series become smaller and 
smaller when approaching the crossing point. It is only at the crossing point 
that we find exactly the same values, pA = p T , at one and the same point 
in time. Before the crossing point, we write pA (i) = p T (i − 1), where i and 
i − 1 are different steps at different points in time, while pT (i) and pA(i) in 
each step  i < ∞ take on different values according to pT  (i) = s + vpA(i). 
The elapsed time t in each step i is calculated as t(i) = bpA(i) = b pT  (i) – s

v
, 

resulting for pA = pT = p at the crossing point into t = s 1
1 − v

 b as found 
above in equation (7). For Achilles and the tortoise in each step we find 
pA(i) = s 1 – vi

1 − v  and pT (i) = s 1 – vi+1

1 − v .
To illustrate the combined solution adequately, we choose an example 

with relatively smaller distances between the steps, namely: s = 100 and  
v = 0.5 instead of 0.1. For this example, Figure 3 shows that the distance 
values pA and pT , calculated stepwise, are 100, 150, 175, 187.5, 193.75, …, 
respectively. When plotted on the curves in Figure 3, it becomes clear that 
the values come closer and closer to the crossing point 100/(1−0.5) = 200 but 
do not exceed it, because the distances between the values on the pA and 
pT scales, when approaching the crossing point, reduce to zero. In the com-
bined solution, each value in the series is used twice, once for the tortoise and 
once for Achilles, but at different points in time. Only at the crossing point 
(in the limit) the same value is found at the same point in time.
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The crossing point

 pA = pT = s 1
1 − v  (13)

only exists, that is, Achilles and the tortoise will only be able to meet, if 
v < 1. Values v ≥ 1 would imply that the curves in Figures 2 and 3 run parallel 
or diverge, which would occur when the runner with the head start would 
run as fast or faster than the one who lags behind. Thus, the condition v < 1 
is part of both solutions. The limit method in the combined solution, where 
the values are alternately placed on the pA-scale and the pT -scale and 
approach the crossing point in steps, is called by Ishikawa (2015) the 
iterative calculation of the crossing point, thus distinguishing it from the 
direct, algebraic calculation presented in the geometric solution. For many 
problems we have no choice but to resort to the iterative or limit solution, 
because there is no direct one. Apparently, this is not true for our case of 
Achilles and the tortoise, where we have two solutions that both lead to 
exactly the same result.

3. Philosophical background of the paradox

The question remains what Zeno wanted to prove with the paradox of 
Achilles and the tortoise and his other paradoxes, because obviously he was 
also aware of the fact that Achilles would pass the tortoise. Unfortunately, 
none of Zeno’s writings has survived. He is introduced by Plato in his 
Parmenides as a participant in a dialogue with three other well-known phi-
losophers in antiquity: Parmenides, Socrates and Aristotle (Plato 1997). In 
addition, Aristotle mentions Zeno in his Physica, where he tries to refute 
Zeno’s arguments (Aristotle 1957). This was the time when philosophers 
discussed the theme of the One versus the Many. And it was the unity of 
Being, the basis of Plato’s theory of ideas, that made him invite Parmenides 
and Zeno to participate in the dialogue. Plato tells us that Parmenides and 
Zeno were not only lovers but also partners in defense of the One.

In contrast to Zeno’s writings, some text of Parmenides has survived. 
In his poem On nature, Parmenides discusses the problem of the One and the 
Many in a particularly compelling form (Burnet 1920). Armstrong calls him 
the first Greek philosopher who reasoned by logical argument, however 
primitive it may be (Armstrong 1981). Parmenides tells us about something 
existent that “It is and it is impossible for it not to be” (Burnet 1920, p. 173). 
Thus, something non-existent is unthinkable and it is logically contradictory 
to think about how it looks. Along this line of thought Parmenides brings 
the ontological and epistemological world together. His One (being) can 
only be thought of as indivisible. The idea of earlier philosophers that things 
in some sense “are and are not” must be rejected. Therefore it must also be 
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rejected that something existent changes over time. This originally existing 
One, being timeless, uniform and necessary, remains equal forever and can-
not increase, decrease or be divided. If you are a defender of this One, Plato 
lets Zeno in discussion with Socrates reason, you cannot at the same time 
argue in favor of the Many. Then the One would become divisible and, if 
you continued in that direction, it would lead you to strange paradoxes.

In their studies of Zeno’s paradoxes, both Salmon (1980) and Huggett 
(1999) pointed out that the first step in the solution of the paradox of Achilles 
and the tortoise was already made by Aristotle. Aristotle questioned Zeno’s 
premise that an infinite amount of time is required to traverse an infinite 
number of finite lengths and emphasized that if one, length or time, is infi-
nite with respect to divisibility, the other must be as well. One cannot travel 
an infinitely long distance in a finite amount of time, Aristotle reasoned, but 
one can traverse an infinite number of parts of a finite distance in a finite 
amount of time. “Aristotle quite appropriately pointed out that the time span 
during which Achilles chases the tortoise can likewise be subdivided into 
infinitely many non-zero intervals, so Achilles has infinitely many non-zero 
time intervals in which to traverse the infinitely many non-zero space inter-
vals” (Salmon 1980, p. 36). In his attempt to bridge the gap between finite 
and infinite in this way, Aristotle clearly foreshadowed the limit solution. By 
emphasizing the similarity between space and time, he also foreshadowed the 
geometric solution, in which the two are linearly related continuous variables. 
Although possibly, as seen above, differently scaled.

The paradox indeed goes wrong in interpreting the infinite number of 
steps in traversing the finite distance as an infinite period of time, but it took 
almost 2300 years after Aristotle to bridge the gap between finite and infi-
nite by a rigorous definition of limit. Specifically, by clearly defining what 
infinite addition in the limit solution stands for. The series Sn = s + vs +  
… + vn−1s = s 1 – vn

1 − v
 having the limit L = s 1

1 − v  (Sn → L   for n → ∞), 
in Cauchy’s definition means that for all real numbers  > 0 there is a 
δ > 0 such that for all n > δ: L − Sn < . Thus, a limit cannot be actually 
reached but for each conceivable small difference with the limit (), we can 
find sufficiently large numbers (n > δ ) that make the difference even 
smaller. As discussed above, this limit only exists, meaning that such δ can 
only be found for every , in particular for an arbitrarily small , if v < 1.

4. Granular spacetime and the paradox

4.1. Are space and time infinitely divisible?

One big philosophical question remains, which is whether time and space 
are not only mathematically but also physically infinitely divisible. The 
answer is no. Already the ancient Greek philosophers speculated about the 
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discreteness of space and time, but the idea has encountered a resurgence in 
the last 100 years. In his 1925 conference contribution On the infinite David 
Hilbert remarked: “The sort of divisibility needed to realize the infinitely 
small is nowhere to be found in reality. The infinite divisibility of a con-
tinuum is an operation which exists only in thought” (Hilbert 1983, p. 186). 
Stephen Hawking explained most clearly in his last book, when he talks 
about the progress in science over the 20th century: “The work on atomic 
physics in the first thirty years of the century took our understanding down 
to lengths of a millionth of a millimeter. Since then, research on nuclear 
and high-energy physics has taken us to length scales that are smaller by a 
further factor of a billion. It might seem that we could go on forever dis-
covering structures on smaller and smaller length scales. However, there is 
a limit to this series as with a series of nested Russian dolls. Eventually one 
gets down to a smallest doll, which can’t be taken apart anymore. In physics 
the smallest doll is called the Planck length” (Hawking 2018, p. 156).

In the limit solution we indeed allow n to increase without bound, so the 
size of the head starts becomes boundlessly small. It appears that we have 
to admit that, at least with regard to the divisibility of space, Zeno was 
right, because according to quantum theory space and time are not infinitely 
divisible, that is, cannot be split in half ad infinitum. Quantum theory 
considers space and time to consist of discrete units with the smallest sizes 
being, respectively, Planck length (≈ 1.616×10−35 meters) and Planck second 
(≈ 5.391×10−44 seconds). The Planck length is the distance that light travels 
in one Planck second. As the radius of a hydrogen atom is ‘only’ 2.5 × 
10−11 meters, this clarifies how minuscule Planck length and second actu-
ally are. To put this into perspective, the following statement concerning 
relative sizes is approximately true: the hydrogen atom is to the Planck 
length what the universe is to us (David T. Crouse, personal communication, 
May 11, 2020) (Crouse 2020).

If space and time are discrete indeed, we must conclude that the paradox 
solutions presented above are not perfect representations of reality. Because 
every mathematical model is an approximation of reality, the discrete nature 
of space and time, intellectually compelling as it is, should not worry us 
too much. A pertinent example is the law of radioactive decay. The cele-
brated half-life, the amount of time it takes for half of the atoms to die, 
relates time to decay by a continuous function. However, the decay neces-
sarily takes place in tiny, discrete steps of individual atoms. Therefore, finally 
only one atom is left, dying in a last sudden discrete step. Because the quan-
tities of radioactive material found in actual practice are relatively large, there 
is no reason not to treat and calculate the decay as a continuous process.

What does the discrete or so-called ‘granular’ conception of spacetime 
mean for the solutions of the paradox? Again, for the macroscopic non-zero 
distances found in practice no adaptation is required, as the continuous 
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formula for radioactive decay does not need adaptation. The question is 
relevant, though, from a philosophical standpoint and if one is interested 
in the study and calculation of extremely small distances with a precision 
approaching that of the Planck length and second (35 and 44 decimals, 
respectively). The building blocks of granular spacetime, equaling two 
times the Planck length and two times the Planck second according to 
Crouse and Skufca (2019), are called hodon and chronon (Margenau 1949), 
respectively. The hodon and chronon are sometimes subsumed under the 
name spason, because both are considered different aspects of a single 
entity in unified spacetime. The question is what happens when we math-
ematically meet in continuous spacetime, these smallest particles in granular 
spacetime.

Efforts have been made over the last 70 years to adapt the continuous 
algebraic rules to granular spacetime, especially the definition and calcula-
tion of distance by the Pythagorean theorem. Crouse and Skufca (2019) 
explain how the study of granular spacetime has been seriously hampered 
by the Weyl tile argument (Weyl 1949) and the apparent violations of the 
laws of special relativity (e.g., length contraction and time dilation). They 
list and discuss a series of problems formulated with regard to the concept 
of granular spacetime, also extensively discussed by Hagar (2014), and 
show how the difficulty of refuting the Weyl tile argument prevented the 
solution of most of the other problems too. The Weyl tile argument criti-
cized one specific discrete distance formula, proven by Weyl to violate the 
Pythagorean theorem (hypotenuse being the square root of the sum of the 
squared triangle sides). Because it did so for all distances, macroscopic as 
well as microscopic, for quite some time the Weyl tile argument under-
mined the whole idea of granular spacetime. New discrete distance formu-
las have since been proposed, however, by Van Bendegem (1987), Forrest 
(1995) and Crouse (2016). Crouse and Skufca (2019) show that these for-
mulas become identical for conditions that best describe granular space-
time. The results of these formulas differ only from the Pythagorean theo-
rem results for the microscopic distances approaching the Planck length but 
converge with the Pythagorean theorem results for larger distances found 
in actual practice.

In granular spacetime, the discrete distance between hodon A and hodon 
B is defined as the number of jumps of one hodon size, which are needed 
to cover the path from A to B, that is, to reach B starting from the boundary 
of A. Calling the sizes of the discrete triangle sides n1 and n2, this number 
m replaces the well-known formula √n1

2 + n2
2  for the hypotenuse in the 

continuous case and can be found (Crouse and Skufca 2019, p. 192) by 
taking the smallest integer m to satisfy the equation

 m > (√n1
2 + n2

2  − 1) (14)
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or for equal triangle sides n1 = n2 = n

 m > (√2n − 1) (15)

Part of the formula is the continuous hypotenuse formula √n1
2 + n2

2  or 
√2n, from which 1 is subtracted. The computation of the discrete hypote-
nuse size m for different triangle side sizes n is illustrated in Figure 4. 
A remarkable result is that in the cases of the smallest possible sizes, n = 1 
and n = 2, the discrete hypotenuse turns out to be equal to its triangle side. 
For increasing triangle sides, n ≥ 3, the discrete hypotenuse increases in 
comparison to the triangle sides, similar to that in the continuous case. Most 
importantly, because the same value 1 is always subtracted, the relative 
difference of m with the continuous hypotenuse value √2n tends to decrease 
and becomes negligible for huge values of m.

Crouse and Skufca derived an interesting formula to associate spatial 
positions in continuous spacetime for arbitrarily chosen axes to positions in 
granular spacetime (Crouse and Skufca 2019, p. 193):

 p = (nχ − lp, nχ + lp] = ((n − 0.5)χ, (n + 0.5)χ] (16)

lp is the Planck length, χ = 2lp the hodon size and the position in continuous 
spacetime is given as an interval. This equation leads as follows to distances 
along a straight line in granular spacetime (David T. Crouse, personal com-
munication, May 11, 2020) (Crouse 2020):

 d = |p(ni) − p(nk)| = |nk − ni|χ (17)

Thus, the intervals (each of extent χ) of positions p in continuous space time 
are assigned single values in granular spacetime, and distances in granular 
spacetime are always integer multiples of χ. No distances smaller than one 
hodon are possible, which makes it the size of the smallest entity in the 
universe that can possibly exist. Distances come in multiples of one hodon, 
while the position interval covers one hodon.

4.2. Discrete solution

Again, what does the introduction of granular spacetime mean for the 
paradox? Most importantly, it provides a third but discrete solution, allow-
ing Achilles to catch up with the tortoise in a finite number of steps. The 
infinity of steps in reaching the limit is avoided and the paradox is solved 
in an extremely easy way. Repeating equation (11) for the distances between 
Achilles and the tortoise (vertical lines in Figure 3) but interpreting it in 
granular spacetime, we find

 pT (i) − pA (i) = svi = niχ (18)



 ACHILLES AND THE TORTOISE 2500 YEARS AFTER ZENO 257

As we have seen in continuous spacetime, for i → ∞, the distance between 
Achilles and the tortoise converges to zero (svi → 0) and pT (i) and pA(i)
converge to limit s 1

1 − v, solving the paradox in continuous spacetime. 
However, in granular spacetime, Achilles’ position matches that of the tor-
toise already, as soon as svi becomes less than one hodon svi < χ. That is 
the case when we take as the number of steps i the smallest integer satisfying

 i > ln χ – ln s
ln v  (19)

The granular distance n, at which Achilles and the tortoise meet, is then 
computed as the smallest integer satisfying

 n > [(s 1 – vi+1

1 – v
) / χ – 1] (20)

Taking chronon as time unit and b as the number of chronons Achilles needs 
to run one hodon, the elapsed time in chronons is easily calculated as nb.

Figure 4: Four examples of discrete distance computation in granular spacetime. 
The discrete distance or hypotenuse between hodon A and hodon B is defined as 
the smallest possible number of jumps of hodon size 1 to cover the path from A 
to B. In the case of equal triangle sides n as shown here, it can be computed as 
the smallest integer satisfying m > (√2n − 1). Example I shows that for triangle 
side n = 1 (the midpoints of the two hodons A and C as well as B and C are one 
hodon apart and thus one jump is sufficient to go from A to C and from B to C), 
one hodon jump from A in the direction of B suffices to partially overlap B, so 
m = n = 1. In example II, two hodon jumps from A enable to partially overlap B, 
m = n = 2, and so again hypotenuse and triangle side are equal. However, in 

example III with side n = 3, giving √2n − 1 = 3.2, the hypotenuse is longer than 
the side: m = 4. This is the case for all values n ≥ 3, similar to that in the 

continuous case. Finally, example IV clearly illustrates that for huge values of n, 
in the example 10000, the discrete distance m = 14142 is virtually equal to the 

continuous value √2n = 14142.1.

I

B
B B

B

C C C CA A A A

II III IV

n
√2n
√2n-1
m

1
1.4
0.4
1

2
2.8
1.8
2

3
4.2
3.2
4

10000
14142.1
14141.1
14142

...
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Let us take the example in Figure 3 with s = 100 meters and v = 0.5. The 
number of steps i = 122, s 1 – vi+1

1 − v  ≈ 200 − 1.881 × 10−35 meters and  
n ≈ 6.188 × 1036. Achilles and the tortoise need only 122 steps to meet in 
granular spacetime, which can be positioned in continuous spacetime at 
only a tiny fraction before the limit of 200 meters. Because of the rather 
big s and the extreme smallness of hodon χ the granular distance n at which 
it takes place is an immensely huge number. But let us replace s = 100 
meters by the much smaller head start of s = 8χ. Then Achilles would meet 
the tortoise in 4 steps: i = 4, s 1 – vi+1

1 − v  = s + sv + sv2 + sv3 + sv4 = 15.5χ, 
so n = 15 and the difference between s 1 – vi+1

1− v  = 15.5χ and limit s 1
1− v

  = 
16χ is 0.5χ. Starting from the head start s of 8 hodons, the race takes place 
in packages of, successively, sv of 4 hodons at the first step, sv2 of 2 hodons 
at the second step and sv3 of 1 hodon at the third step. At the 4th step sv4 
of less than one hodon Achilles meets the tortoise and the whole race is over. 
He skips the infinitude of steps he would still have to run in the remaining 
distance of 0.5χ in continuous spacetime.

It is clear that the interval of only one hodon in equation (16) becomes 
relatively smaller with increasing n. The question is when the number of 
hodons n is sufficiently large to consider the difference between the left 
and right values in the interval to be negligible, so that we can replace the 
interval by a single value, the granular approach by well-known continu-
ous spacetime methods and the discrete solution by the continuous space-
time solutions. This depends on how much we allow distance according to 
the Pythagorean theorem (√n1

2 + n2
2  or √2n for equal sides n1 = n2 = n) to 

deviate from the corresponding value in granular spacetime (√n1
2 + n2

2  − 1 
or for equal sides √2n  − 1). Suppose that we would be satisfied with a 
relative deviation of 0.001 or smaller, that is (√2n)/(√2n − 1) ≤ 1.001. This 
would make the required number of hodons in the discrete distance n ≥ 707. 
The solution distance s 1

1− v , derived above in continuous spacetime for the 
distance at which Achilles and the tortoise meet, would become correct, at 
least for all values larger than 707χ = 1414lp ≈ 2.285 × 10−32. Because 
2.285 × 10−32 < 1 × 10−31, that is for all values large enough to be 
expressed as non-zero in 31 or less decimals. As the size of a hydrogen 
atom needs no more than 12 decimals to be expressed, it is safe to conclude 
that this solution distance would become correct for most practical pur-
poses. In the example of Figure 3 with s 1– v123

1− v  virtually indistinguishable 
from s 1

1− v
 = 200 and the granular distance n so extremely huge, sticking 

to continuous spacetime methods seems quite reasonable indeed.
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5.   Supertasks, infinity machines and other topics in the recent history 
of the paradox

“In honor of Zeno, let us apply the name ‘Z-sequence’ to an infinite 
progression of intervals of space or time whose successive magnitude are 
1/2, 1/4, 1/8, …, and so on. For the sake of arithmetic simplicity, I shall 
follow Zeno’s procedure and assume that the successive durations of the  
(…) runner’s submotions form a Z-sequence just as the subintervals of space 
which are covered by these submotions” (Grünbaum 1955, p. 204). This 
way, referring to an instance of the more generally formulated sequence in 
equation (1), Grünbaum started one of his contributions to a heated debate in 
philosophy that took place from 1950 onward (Black 1950-51, Wisdom 1951-
52, Thomson 1954-55, Benacerraf 1962, Vlastos 1966) and still continues. 
See also the extensive bibliography section in Salmon (2001). It is about the 
infinite number of steps that Achilles, after completing his race successfully 
in granular spacetime, would still have to run in continuous spacetime. Such 
an infinite sequence of acts to be performed in a finite time is called a super-
task in the debate. And the discussion focuses on the logical as well as phys-
ical, especially kinematic, possibility of performing the supertask. As empha-
sized by Ardourel in his article on a discrete solution (Ardourel 2015), the 
supertask problem shows up only in continuous spacetime, that is, only when 
applying the limit or geometric solution of the paradox. And we can add that 
the problem resides in a minute part of the finite time interval only, the part 
covering less than one hodon length (less than 3.23 × 10−35 meters) after com-
pletion of the discrete solution’s simple task in granular spacetime.

Is performance of a supertask possible? It will be no surprise that most 
philosophers agree that Achilles in real life is not able to pass or plant an 
infinitude of flags before reaching the finish flag of his race. Most of the 
discussion concentrates on whether performing supertasks is logically or kin-
ematically possible. Flag planting instead of or in addition to merely passing 
was made part of the supertask by Grünbaum (1955). The acts in successive 
subintervals need sufficient distinctness, “physically individuated motions” 
in the words of Vlastos (1966, p. 103), to differentiate the ‘staccato’ stepwise 
Z-sequence run in kinematics from the smooth run in every day life. Because 
planting a flag takes time, Achilles, himself called legato runner and having 
equal speed during the entire race, is given a colleague, the staccato runner, 
who does the planting work. That is, during each subinterval, the staccato 
runner first runs part of it faster than Achilles, then stops to plant the flag 
and next makes sure he departs simultaneously with Achilles again at the 
start of the next subinterval. A further crucial point in the discussion is, 
what reaching the finish means: approaching the finish flag arbitrarily 
closely but not touching it or really touching it. That is, whether the interval 
of the supertask is half open or includes the limit point.
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Burke (2000) put the authors about supertasks into three groups:

1.  the group of supertask completers who believe in the logical possibility 
of supertasks,

2.  the group of non-believers to which Burke counts himself,
3.  and the group of the “reigning orthodoxy”, which accepts some super-

tasks as logically, kinematically, and dynamically feasible, while other 
supertasks, if not infeasible logically, are considered at least infeasible 
kinematically and dynamically.

Burke put Russell and Whitehead in the first group. Russell and Whitehead, 
although both were impressed by Zeno’s thinking, judged that Zeno missed 
in his reasoning the fact that an infinite number of finite times may be finite 
(Russell 1914, p. 49) and that he, out of ignorance of the theory of infinite 
numerical series, produced an invalid argument (Whitehead 1978, p. 69). 
By accepting so the validity of the limit solution both Russell and White-
head became supertask completers.

The non-believers in Burke’s second group with Black and Thomson as 
most prominent representatives seem to claim that the supertask in Cauchy’s 
limit approach was a self-contradictory concept. An audacious viewpoint 
indeed after Cauchy logically impeccably proved that assuming a finite sum 
for an infinite sequence of finite intervals is not self-contradictory. How-
ever, in the opinion of the non-believers the contradiction runs deeper than 
this and is already present in the sheer expression “infinite series of acts”. 
To support their claims Black, who coined the term “infinity machines”, 
and Thomson, who in the title of his 1954-1955 article used the term 
“supertasks” for the first time, invented several infinity machines. The most 
well-known and simplest is Thomson’s lamp. This has a single push-button 
switch on its base. When pushed, the lamp turns on, if off; and turns off, if 
on. Now the supertask is performed by someone who pushes the switch an 
infinite number of times, first after 1 minute switched on, then after the next 
1/2 minute off, then after another 1/4 minute on again, etc. The sum of this 
well-known series of time intervals is 2 minutes (limit s 1

1− v  with s = 1 
minute and v = 1/2). The presumed contradiction is in the state of the lamp 
after these 2 minutes. It cannot be on, because, if on, it was switched off. 
It cannot be off, because, if off, it was switched on. So, it must be on and 
off, or neither on nor off.

It was shown by Benacerraf (1962) and is now generally agreed upon, 
even by Thomson himself (Thomson 1954-55, p. 131), that the derivations 
of Black and Thomson were incorrect. A thorough study of supertasks and 
infinity machines has been done by Grünbaum (1955) in Burke’s third 
group. Supertasks can be taken to be logically sound in his view, that is 
without contradictions, if the more complicated case of the staccato run can 
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be proven to be kinematically and thus logically sound. A problematic kin-
ematic aspect of the staccato run is the planting process. Planting requires 
equal minimal spatial displacements across the Z-sequence but within ever 
decreasing Z-subintervals and this in turn would require infinite accelerations. 
Physicist Richard Friedberg helped to develop a version of the staccato run 
that obviated this and other problematic features, so that Grünbaum could 
“conclude without qualification that the staccato run is no less feasible than 
the legato run and that both are indeed kinematically possible” (Grünbaum 
1955, pp. 215-216). Nevertheless, Burke (2000) rejected Grünbaum and 
Friedberg’s staccato run as impossible and claims to have proven that all 
staccato runs possess features that make them kinematically impossible. 
Supposing this to be true and even that all supertasks in all possible meanings 
are physically impossible, this does not mean that they are self-contradictory 
in the pure logical sense.

Let us take a closer look at Thomson’s lamp and why it cannot and does 
not show contradictory behavior. Thomson assumes that the infinity of 
switches in the half open interval [t0, t1) leads to the lamp being simultane-
ously on as well as off at time point t1. However, because the infinity of 
steps in the supertask occurs in the half open interval, nothing can be said 
about the state of the lamp at t1, at least not on the basis of what happened 
in the interval. Of course, the lamp is on or off at t1, but that must be the 
result of something outside. It is important to note that the behavior of the 
lamp, successively switched on and off, is not a convergent series and there-
fore its value at t1 is unpredictable from what happened in the half open 
interval.

Because his series is supposed to be convergent, the situation of Achilles 
is fundamentally different. Also in his case the limiting value is not part of 
the half open interval (Achilles does not touch the finish flag), but is indi-
rectly computable based on it, as the limit of a function approximating this 
value arbitrarily closely. It is also directly computed at t1 in the geometric 
solution, but again not belonging to the half open interval.

More recently a new solution of the paradox and the supertask problem 
was proposed by McLaughlin and Miller (1992), using internal set theory 
(Nelson 1977), a branch of nonstandard analysis (Robinson 1966). Whereas 
17th and 18th century mathematics was still haunted by the ghostlike infin-
itesimals (whether they exist or not), which Cauchy in 19th century managed 
to get rid of by his limit concept, nonstandard analysis made them mathe-
matically respectable again as a new kind of so-called nonstandard numbers. 
The nonstandard infinitesimal numbers are extremely small, that is, greater 
than zero but smaller than any standard positive real. Now, a highly inter-
esting theorem of internal set theory asserts the existence of a finite set that, 
although finite, contains all the standard numbers, including all reals. This 
enabled McLaughlin and Miller to conclude that a finite set suffices to form 



262 THEO THEUNISSEN AND JOHAN H.L. OUD

Achilles’ ‘Z-sequence’ and thus to complete his race. It is clear that for 
bridging the infinity gap as done in the continuous spacetime solutions, inter-
nal set theory may provide an interesting alternative. Not all authors are 
convinced that it provides an improvement on the continuous spacetime 
solutions, however. The approach met fierce criticism from Alper and 
Bridger (1997), who mention as a main point the misleading use of the word 
‘finite’. Although viewed from inside (‘internally’) the set is finite indeed, 
viewed from outside it nevertheless remains infinite. “Indeed, internal set 
theory, which applies the predicate ‘finite’ to a set that contains all reals, 
does not relieve the uneasiness caused by Zeno’s paradoxes. It only explains 
the obscure by the more obscure” (Alper and Bridger 1997, p. 154).

6. Discussion and conclusion

In this article, we discussed extensively three solutions for Zeno’s para-
dox of Achilles and the tortoise. The first one, the limit solution, is the most 
well-known. It directly follows and answers Zeno’s reasoning. However, the 
second one, the geometric solution, is simpler as well as more informative. 
It simultaneously yields the exact distance and exact period of time that 
Achilles needs to catch up with the tortoise. It is unfortunate that the geomet-
ric solution receives little or only highly technical attention in the literature 
(e.g., see Ishikawa 2015). In discussing the philosophical background, we 
explained how Aristotle made the first step in solving the paradox, a step 
that finally led to the limit and geometric solutions. The fact, however, that 
spacetime cannot be broken down beyond the basic units of Planck length 
and Planck second, was reason to consider granular spacetime and the for-
mulation of the recent discrete solution in granular spacetime.

It is important to note that no inconsistency exists between the solutions 
in continuous spacetime and the discrete solution. Granular spacetime can 
be viewed as a restriction on continuous spacetime, saving only what has 
at least the hodon size, the size of the smallest thing in the universe that 
can exist. Because only full hodons count in the discrete solution, the num-
ber of steps by Achilles and the tortoise in granular spacetime becomes 
finite and the distance at which Achilles and the tortoise meet slightly 
shorter than in continuous spacetime. Note also that for the reasons given 
above the restrictive discrete solution is preferred as a model of reality and 
the continuous spacetime solutions are seen as approximations of the dis-
crete one, rather precise approximations for most practical purposes though. 
A method is given to compute the distance for which application of the 
continuous spacetime methods can still be considered valid.

What then is the relevance of the supertask debate for the solutions 
considered here? Most of the efforts in the debate aim at proving that 
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examples of supertasks such as the legato and staccato run and infinity 
machines such as Thomson’s lamp are kinematically and logically pos-
sible. It is true that kinematically sound supertasks are logically sound as 
well. But when the status of the supertask-fraught limit solution is simply 
an expedient approximation of the discrete solution, kinematic soundness 
is less important. What remains as a requirement is logical soundness in 
the bare minimum sense of being free from contradiction. There is no 
proof that any of the solutions discussed would lack the requirement in 
this minimum sense.

Sometimes a discrete solution is not seen or not only seen as an alterna-
tive solution of Zeno’s paradox (e.g., Ardourel 2015, Van Bendegem 1987) 
but as another way to refute his argument. Because space and time are not 
infinitely divisible, the paradox would miss its point. Of course, we do not 
know for sure what Zeno has said or written and how he would have reacted 
to the facts of quantum theory. There are interpretations of Aristotle’s text 
according to which Zeno did not misinterpret the infinite number of steps 
as an infinite time (Vlastos 1966) but rejected indeed the infinite divisibility 
of space. If true, it would still enhance Zeno’s significance for modern 
physics and philosophy as recognized earlier by Russell (1914, p. 54). 
Zeno’s reasoning in Plato’s dialogue, often celebrated as the first instance 
of ‘reductio ad absurdum’ in history, is such that he assumes two possi-
bilities: the One or the Many. He then literally says to Socrates about the 
motives of his book: “You do not quite catch the motives (… ), which was 
(…) showing that the hypothesis of the existence of the Many involved 
greater absurdities than the hypothesis of the One” (Plato 1997, 128b-128e). 
There appears to be little doubt that granularity negates infinite divisibility 
of space and therefore leads one horn of the dilemma, the Many, to being 
an absurdity. Therefore, instead of refuting his argument, it would support 
it and lead to his alternate hypothesis of the One.

What will nowadays be less convincing in Zeno’s reasoning for most 
people is the dichotomy of the One and the Many, and the Many implying 
infinite divisibility of space. The modern dichotomy is continuous space-
time, which implies infinite divisibility, versus discrete granular spacetime. 
Rejection of the first indeed leads to the adoption of the second and the valid-
ity of a discrete solution of Zeno’ paradox, but not to the exclusion of infini-
tesimal calculus as an extremely useful tool in the study of macroscopic 
distances in reality.
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