
Specification in Continuous Software Development
THEO THEUNISSEN and UWE VAN HEESCH, HAN University of Applied Sciences

The procession of lean, agile and DevOps development processes introduces new challenges and offers new chances regarding

software specification and documentation. Challenges for instance because specifications, just like code and applications, are
subject to continuous change; chances, because continuous software processes make use of a high degree of automation which

also introduces efficient means for specification and documentation.

In this paper, we describe the continuous software design specification pattern, which contains guidelines and princi-
ples for specification in continuous development processes. In these processes, a software system is an evolution of life cycles

where each iteration has a start, continuation and end of defining specifications. Therefore, the pattern explicitly distinguishes

specifications to be created at the start of an iteration, specifications during an iteration, and a specification-refactoring at the
end of each iteration. Apart from the pattern description, this paper describes the principles of continuous software development

derived from lean software development, agile, and DevOps.

CCS Concepts: •Software and its engineering→ Patterns; Designing software;

Additional Key Words and Phrases: Lean, Agile, DevOps, Continuous Development, Software engineering

ACM Reference Format:
Theo Theunissen and Uwe van Heesch. 2017. Specification in Continuous Software Development. EuroPLoP (July 2017), 19
pages.
DOI: https://doi.org/10.1145/3147704.3147709

1. INTRODUCTION

In our previous research, we have been investigating practices in design and documentation in web
and mobile applications [Theunissen and van Heesch 2016]. Our focus was on understanding the role
of software architecture in these applications. Among other things, we tried to find out what is de-
signed up-front (i.e. prior to implementation) and how. Among others, our results indicate that verbal
communication plays a significant role in the preservation of knowledge. We also found that many
companies struggle with the distinction between specification up-front and documentation afterwards.
While specification and documentation are often seen as one, many approaches are either a good fit for
specification or for documentation, but not for both.

The software projects, in which we observed these phenomena were predominantly governed using
lean, agile or DevOps process models. The leading principle of lean software development [Poppendieck
and Poppendieck 2003] is to avoid efforts that do not increase value for the customer. Agile software
development [Fowler and Highsmith 2001] tries to exploit the full potential of human collaboration
in closely-interacting teams, thereby relying on short improvement cycles to achieve frequent deliv-
ery of working software. In DevOps [Erich et al. 2014], development teams are formed in way that

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’17, July 12-16, 2017, Irsee, Germany
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4848-5/17/07...$15.00
https://doi.org/10.1145/https://doi.org/10.1145/3147704.3147709

Proceedings of the 22nd European Conference on Pattern Languages of Programs

2 • T. Theunissen, U. van Heesch

the members in each team cover the full set of competences, skills and responsibilities required to
develop, operate, and maintain a software product. Because the development team is responsible for
the entire product life cycle, it becomes more sensitive to operation concerns like security, scalability,
performance, and portability. Additionally, DevOps aims at avoiding unnecessary transfers of artifacts
between different teams, as such transfers usually require a significant communication and documen-
tation overhead.

Lean, agile, and DevOps all have certain principles in common that imply a paradigm shift regarding
software specification and documentation: efficiency and effectiveness, learning, flexibility of the team,
short iteration cycles, people skills, improvement and involvement of customer, and commitment of the
organization. As opposed to many traditional software projects, which have a defined start and end-
point (which can be a point in time or a specific result), lean, agile and DevOps were designed to support
continuous software development, in which continuity (i.e. the absence of a predefined end-point) is one
of the major characteristics. This is primarily supported by rather short iterative development cycles.

In this paper, we elaborate specifically on the difference between specification and documentation in
software projects that embrace the previously mentioned principles. The pattern CONTINUOUS SOFT-
WARE DESIGN SPECIFICATION differentiates specifications required at the beginning of an iteration,
specifications required during an iteration and documentation of important results. Applying this dis-
tinction is a way of separating the concerns that developers have in specification. Not one size fits
all, but instead, certain elements like information whiteboard sketches are only required temporarily,
while other specifications need to last longer.

The rest of this paper is organized as follows: In Section 2, we describe the three process models lean,
agile, and DevOps and identify principles they have in common. Section 3 describes the CONTINUOUS
SOFTWARE DESIGN SPECIFICATION pattern. Finally, Section 4 identifies areas of future work.

2. BACKGROUND

In this section, we present background work on agile software development, lean, and DevOps. These
processes form the basis of what we later refer to as Continuous Software Development. Many of the
described principles are enablers for a more lightweight way of software specification and documenta-
tion, which we describe in the pattern CONTINUOUS SOFTWARE DESIGN SPECIFICATION below.

2.1 Lean

Lean was originally developed as a manufacturing practice for cars. In the meantime, lean practices
have been adopted by many other engineering discipline, among others by the software engineering
discipline. Following [Poppendieck and Poppendieck 2003], lean software development entails the fol-
lowing principles:

(1) Eliminating waste Eliminating waste is the most fundamental lean principle. Waste refers to
anything that does not produce value for a customer. Examples of waste in physical products are
motion, transportation, and inventory. In software engineering, waste includes task switching of
team members, defects (bugs), processes that do not have an immediate benefit, and paperwork.

(2) Amplify learning This principle stems from the idea that development is rather a creative process
than a systematic process. Developing software is a learning process with progressive insights, trial
and error and reconsidering decisions based on tacit knowledge and implicit skills.

(3) Decide as late as possible This principles, which primarily targets concurrent development of
complex systems, advocates the exploration of decision options and delaying the final decision until
it can be based on facts rather than speculation. In some situations, this may require building
variation points into the system so that development can continue while decisions are postponed.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Specification in Continuous Software Development • 3

(4) Deliver as fast as possible Deliver as fast as possible is required for fast time to market. Cus-
tomers like fast delivery. For software development, this often translates to more flexibility. In the
first place, this may seem contradictory to Decide as late as possible. In the reality, it rather comple-
ments this principle. While the former principle causes decisions to be delayed, the latter principle
makes sure that decisions are nevertheless made frequently. In combination, this means that deci-
sions are delayed to the last possible moment (with a release being the last possible moment).

(5) Empower the team Empower the team by trusting the capabilities of an experienced team. De-
cisions should be made inside the team and not be imposed on the team. As a consequence, teams
need a certain level of maturity. It is not easy to assemble a team that is both experienced and has
junior developers, has a lot of knowledge and is also willing to and capable of learning.

(6) Build integrity in Users, customers, and developers all just see one aspect of a software product.
The aspect of integrity aims at one integral system where perceived and conceptual integrity is
built-in. The perceived integrity is about user experience and tries to anticipate future use cases.
A software system has integrity, if it has a coherent architecture, high usability, is maintainable,
adaptable, and extensible.

(7) See the whole People who are experts in a specific area of software engineering tend to maximize
the performance of the part of the software they are most knowledgeable about, while loosing sight
of the system as a whole.

Many of the above principles can be related to specification and documentation efforts. The most
prominent one being Eliminating waste, as specification and documentation that does not provide
an immediate benefit and that on contrary even causes rework effort for keeping it in-sync with the
system is considered waste.

2.2 Agile

In 2001, the agile manifesto [Fowler and Highsmith 2001] gave rise to a new way of thinking and collab-
orating in software projects. Since then, several process models (the most prominent being scrum [Al-
liance 2017] and XP [Beck 1999]) evolved that embrace the principles postulated in this manifesto:

(1) Customer Satisfaction Satisfy the customer by delivering software early and continuously.
(2) Welcome changes Anticipate frequently changing requirements.
(3) Frequent releases Deliver working software in short iteration cycles.
(4) Collaborate with business people Collaborate with business people daily.
(5) Trusted Individuals Form teams of motivated people and trust them to get the job done.
(6) Face-to-face conversation Face-to-face communication is most efficient and effective.
(7) Working software is progress Measure progress by the amount of working software developed.
(8) Sustainable pace Processes should be sustainable in a way that the team can keep up pace.
(9) Technical excellence Good design and technical excellence enable agility.

(10) Simplify Favor simplicity over complexity. Avoid unnecessary work.
(11) Self-organizing teams Empower teams to manage themselves.
(12) Regular adjustments The team reflects on process regularly to become more effective.

Likewise lean software development, many agile principles relate to specification and documenta-
tion. The principles Face-to-face conversation and Trusted Individuals for instance express that verbal

Proceedings of the 22nd European Conference on Pattern Languages of Programs

4 • T. Theunissen, U. van Heesch

communication between skilled individuals is better than communication via specifications and docu-
mentation. Additionally, the agile manifesto even explicitly promotes ”Working software over compre-
hensive documentation”, which is a direct hint towards the amount of documentation required in agile
projects.

2.3 DevOps

The term DevOps, coined in 2009, is a concatenation of Development and Operations. The following
principles were derived from a literature study on DevOps, conducted in 2014 [Erich et al. 2014].

(1) Culture The primary characteristic of a DevOps culture is increased collaboration between the roles
of development and operations [Wilsenach 2016]. Another important element is shared responsibil-
ity. Likewise agile and lean, the DevOps culture advocates an organizational shift to autonomous
teams, who strive for a continuous improvement of their process. Additionally, [Walls 2013] empha-
sizes open communication, alignment of incentives and responsibilities, respect, and finally, trust.

(2) Automation A cornerstone of DevOps is a high degree of automation. Automation facilitates the
other characteristics of DevOps. Typical automated steps in a CI/CD pipeline are agile development,
integration, delivery, deployment and operations.

(3) Measurement DevOps promotes the introduction of reliable measures to get hold on the develop-
ment process. [HP 2016] mentions four dimensions of metrics that should be covered in any DevOps
process: velocity, quality, productivity, and security. This principle is covered in the solution where
at the finish of an iteration, the evaluation is described. Evaluation implies a set of measurements.

(4) Sharing In DevOps, sharing refers to knowledge, tools and successes [Humble and Molesky 2011].
Sharing knowledge in a DevOps team is the basis for efficient collaboration. Sharing coding styles,
development tools and implementation techniques to develop features and maintain environments
and infrastructures are key to be and stay successful. Teams should also share success, e.g. by
celebrating important releases together.

(5) Services The principle of services represents the trend that software companies are moving from
a product model to a services model. Key characteristics for services are intangibility, inventory,
inseparability, inconsistency and involvement [Lovelock and Gummesson 2004].

(6) Quality assurance Team needs to build quality into the development process. Because iterations
are short, the new code is brought easier and faster into production. This includes cross-functional
concerns such as scalability, performance and security. To increase quality, it is required that both
developers, operations and customers have a close relation to have a better understanding of issues,
enablers or risks. Furthermore, monitoring processes, including development metrics and end-user
actions, enables early detection of problems [Cukier 2013].

(7) Structures and standards DevOps is not just a team issue, but requires standards that the whole
organization embraces. Shifting to DevOps is a major organizational effort that requires commit-
ment from all participating parties.

Culture is the DevOps principle that has the greatest impact on specification. This principle em-
braces the standards, values, and ways of working that are manifested in collaboration, shared re-
sponsibility, and autonomous teams. These DevOps values lead to less or at least loose specifications.

2.4 Principles of Continuous Software Development

In this section, we revisit the principles of lean, agile and DevOps to extract a common set of principles
that among others have an impact on the way teams deal with specification and documentation prac-
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Specification in Continuous Software Development • 5

tices. In the remainder of this paper, we will refer to development processes that exhibit these shared
principles as Continuous Software Development (ConSD).

The principles are:

(1) Efficiency, effectiveness In continuous software development, one strives for an optimal balance
between efficiency and effectiveness. Effectiveness refers to the desired outcome, i.e. the percentage
(quality) that the result matches the objectives. Efficiency means the amount of resources (money,
time, people) used to realize the results. Furthermore, there are two limitations related to effective-
ness and efficiency. First, resources like time, money and people, are limited. Second, even adding
virtually unlimited resources to a project could not force desired results. Brooks states that adding
people to a project takes time to become productive, adding people increases communication over-
head, and there is a limited divisibility of tasks [Brooks Jr 1995] 1. Because of these limitations and
dependencies, there is a trade-off between maximizing effectiveness and maximizing efficiency. The
ambition is to achieve as much as possible for both efficiency and effectiveness without losing the
balance. Regarding efficiency, the primary means in lean is eliminating waste. Effectiveness refers
to delivering working software, achieving customer satisfaction, and simplicity. Additionally, mea-
surements are required for checking if development and operations are on the right track. Both,
efficiency and effectiveness should strive for a sustainable pace.

(2) Learning, improvement Learning and improvement are about progressive insights; and planned
and unplanned improvements. The objective is to continuously improve the development process
as well as the learning outcome. Therefore, perform regular feedback sessions like e.g. a sprint
retrospective in scrum, encourage learning by doing and learn from mistakes. The process models
achieve this by promoting short feedback loops, sharing ideas, uncertainties and mistakes, and a
culture of trust.

(3) Flexibility Flexibility is about possibility and willingness to adapt to new situations. The objective
is to benefit from actual insights and agreements. Therefore, teams need to welcome changes and
establish a culture that embraces uncertainties and last minute changes and is able to think out of
the box. There is no necessary requirement for learning with flexibility. It might well be possible that
one trivial situation must be changed for another trivial situation. The core message of flexibility is
the ability to adapt to new (unforeseen) situations.

(4) Time-to-market Time-to-market refers to short delivery cycles or frequent releases. The objective
is to deliver features as fast as possible. Improvements will start earlier and there is a better fit
between end-user, customer, organization, and development team. To accomplish this fast time-to-
market, a high degree of automation from development to deployment is required.

(5) Trust, attitude Trust and attitude refer to: 1) the trust given to the team and 2) the team’s attitude
to show that they are worth the given trust. This trust is reciprocal; all parties should trust and live
up to the given trust. The objective is to let everyone excel in their competences, but also to think
outside the box by involvement from other parties. This requires a specific organizational structure
and standards. Typically, these types of organizations have little management with a high degree
of autonomy for the teams.

(6) Competences Competences refer to highly skilled people who are experienced in a wide range of
technology. The objective is to build teams capable of bringing together the concerns from the team,
the customer, and the organization. Within the team, there should be a shared and coherent view on
the software product. Additionally, quality management processes are required to make sure that
competences and capabilities match or exceed the requirements.

1“If one woman delivers a baby in nine months, then nine women can’t deliver a baby in one month”

Proceedings of the 22nd European Conference on Pattern Languages of Programs

6 • T. Theunissen, U. van Heesch

(7) Competitive advantage This refers to the risk that people tend to excel in a specific skill while
at the same time losing sight of the big picture. Face-to-face conversation between parties and team
members reduces the risk of losing sight. As part of this view, teams should focus on delivering added
value, while leave commodity solutions to service providers. The objective is achieve a competitive
advantage by focusing on core competences and outsource commodity services.

(8) Involvement This includes involvement from end-user, customer, developers and operations. The
objective is to share common goals. This requires shared principles and priorities, and understand-
ing of one’s concerns and standards.

In appendix A we show a table that maps the principles of continuous software development to lean,
agile and DevOps.

3. PATTERN: CONTINUOUS SOFTWARE DESIGN SPECIFICATION

This pattern describes a lightweight manner to deal with specifications in a continuous software de-
velopment process.

3.1 Context

You have deliberately chosen to apply the principles of continuous software development. Your team
has worked together on multiple software products. The people in your team know each other well
and have an established communication culture. The team members are also knowledgeable about the
technological domain, in which the software product to be developed resides.

You have already settled a proven build pipeline, which includes for instance a set of build tools (e.g.
Maven2 or Gradle3), a distributed version control system (like Git4), a document management system
and wiki (for instance Confluence5), and a task and project tracking tool (see for instance Jira6).

3.2 Problem

The developers in your team strive for omitting the creation and maintenance of artifacts that are not
immediately required for building a high-quality software product. You consider maintaining a spec-
ification document beyond the realization that provides just another view on a software product that
is already specified by the source-code itself as wasted effort. Totally omitting specification, however,
comes with certain downsides:

Specifications are needed as a basis to reason and communicate about architectural challenges.
Specifications are needed as input for task-planning activities, e.g. for setting up a work breakdown
structure.
Specifications are required to settle agreements regarding interfaces between modules developed
by different team members, or other teams working on other parts of a larger software system.

Thus, the problem is: How to provide just-enough adequate specifications for reasoning
about architectural problems, supporting planning activities, and defining interfaces be-
tween team members?

2https://maven.apache.org
3https://gradle.org
4https://git-scm.com
5https://www.atlassian.com/software/confluence
6https://www.atlassian.com/software/jira

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Specification in Continuous Software Development • 7

3.3 Forces

The following forces need to be considered:

(1) Shaping thoughts The process of specifying contributes to a better understanding of the problem
and envisioned solution of an application.

(2) Progressive insight During a software development process, developers continuously gain new
insights that they want to or need to consider in the implementation. As a specification is a kind
of implementation plan, new insights either need to be woven into the specification before they
are implemented (which can be seen as wasted effort in lean terminology), or the implementation
derives from the specification.

(3) Specification gaps require assumptions to be made Things that are not explicitly specified
(i.e. written down) require assumptions to be made by developers during the implementation. Silent
assumptions bare the risk that individual team members make decisions that interfere with or even
contradict each other.

(4) Hidden disagreement Related to the previous force, relying primarily on oral communication
bears the risk of hidden disagreement. That is, developers discuss a problem or an envisioned solu-
tion and actually talk across purposes without realizing.

(5) Overestimated competences and underestimated complexity People tend to overestimate
their own competences and skills [Kruger and Dunning 1999]. This leads to an underestimation of
the problem complexity. When extensive specification is omitted prior to implementation, the real
complexity of the software problem may be uncovered only piecemeal during the implementation,
which may lead to significant rework.

(6) Time to market Ever increasing demands for faster time-to-market require faster deployment and
therefore shorter development cycles. Often, there is no time for extended technical specification
upfront and complete documentation afterwards.

(7) On-boarding of new team members When new team members enter the development team, or
the entire software product is transferred to or picked up by a new team, the software design needs
to be transferred to the new people in charge.

(8) Explored design space The required coverage degree and formalism of specifications relates to
the degree to which the design space of the application is already explored by patterns, frameworks,
libraries and other assets. Applications which can be built upon existing frameworks or high-level
programming languages, for instance, require less specifications than applications in domains that
are not (yet) covered by such assets. In those cases, the abstractions introduced by the frameworks,
templates and libraries, form a vocabulary for developers that allows them to communicate more
efficiently and they induce structure to software systems that can be understood by studying the
framework rather than having to study the application built upon the framework. Other exam-
ples are (parts of) applications that need to interact closely with custom hardware and or custom
communication protocols. These applications may also require a higher degree of specification.

3.4 Solution

Instead of aiming for providing a single self-contained and comprehensive specification document,
align your specification process with the continuous development process. Therefore, split the spec-
ifications created into three different types of specifications that serve different purposes
and address different concerns:

Specifications at the start of an iteration →
Proceedings of the 22nd European Conference on Pattern Languages of Programs

8 • T. Theunissen, U. van Heesch

Specifications during an iteration →
Refactored specifications at the end of an iteration

In the evolution of a system, each iteration has a life cycle where specifications are created at the
beginning of an iteration, altered during development, and some specifications become obsolete at
the end of an iteration. Specifications are not deleted, but are kept in a repository without further
intervention, unless deletion is part of a specification refactoring. Only those specifications that are
relevant to the next iteration or maintenance survive an iteration.

We refer to specification as an artifact created prior to or during the realization of a piece of soft-
ware. Specifications do not necessarily cover a whole system, but they can also concern a small part
of the system (e.g. a part required for the implementation of a user story). Here, specification is a pre-
scription meant to support and constrain the implementation. Documentation, on the other hand, is
a description of the actual implementation for preserving and sharing rationale and knowledge about
the implementation. Documentation is just another deliverable, if it is valuable, doing it is not free and
probably displaces something else, e.g. development time.

In the following sub-sections, we describe each of those types in detail.

3.4.1 Specifications at the start of an iteration. Specifications required to effectively start an itera-
tion (e.g. a sprint in a scrum-project) should include the following items:

(1) A list of requirements to be addressed in the iteration.

(2) An architectural vision.

(3) A description of the technological ecosystem in which the software will be developed.

(4) Information about the most important architectural concerns (i.e. quality attribute requirements
and business drivers), which determine the priorities of decisions to be made.

It is not advisable to aim for providing a comprehensive specification covering the aforementioned
aspects in all detail; instead the specification should be deliberately limited to information required
to start a development iteration thereby taking into account the skills, knowledge and experience of
the development team. Some of the mentioned artifacts may already exist when they were created in
a prior iteration. In such cases, the artifacts are only revisited and adapted if required.

Requirements to be addressed in an iteration (1) are typically captured in a task planning tool. It is
not advisable to duplicate requirements, i.e. to also specify them elsewhere.

Figure 1 shows a product backlog created on a scrum-board in Jira. Requirements to be addressed
in the next iteration are shown underneath the heading Sample Sprint 2. Underneath this so called
Sprint Backlog, the Product Backlog contains a list of all other requirements to be addressed in the
future. The product backlog is continuously maintained and must be seen as a living artifact that
always shows the current state of potential requirements. Note that the requirements captured here
are usually primarily functional requirements, or even concrete development-related tasks derived
from functional requirements. We will get to non-functional requirements below.

The second and third items required to start an iteration are an architectural vision and a descrip-
tion of the technological ecosystem. Often, the space available on a regular whiteboard is sufficient for
this kind of specification. Figure 2 shows an example.

The whiteboard shows a specification created by a scrum-team at the beginning of Sprint-0. The team
created this specification together to settle agreements required to start with the first development
iteration. The example contains both of the aforementioned items:
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Specification in Continuous Software Development • 9

Fig. 1: A product backlog in Jira [Atlassian 2017]

Fig. 2: Whiteboard drawing of architecture vision

High-level architectural vision:. The whiteboard shows an informal sketch of a three-tier layered ar-
chitecture with a mobile application client and a web-application, a restful service facade, and a

Proceedings of the 22nd European Conference on Pattern Languages of Programs

10 • T. Theunissen, U. van Heesch

relational database. Sub-systems are not specified formally, but in a way that is sufficient for the
team members to understand each other.

Technological Ecosystem:. The whiteboard sketch also gives hints regarding the technological ecosys-
tem, in which the system will be developed. In this case, the back-end uses Java technology com-
bined with open-source database management systems, a cross-platform framework for the mobile
application, and a client-side JavaScript framework for the development of the web application.
Note that some technologies are marked with a question mark, which indicates that a final decision
has not yet been made. However, the diagram provides enough information to get an idea of the
target ecosystem. Subsequent decisions can be made during the development iteration itself.

The fourth and final item required to start an iteration is information about the most important
architectural concerns to be considered during the iteration. Usually, agile or lean teams focus on
functionality while assuming typical requirements regarding quality attributes. Only in situations, in
which special requirements exist that derive from the typical needs of the type of application devel-
oped (in which the team is experienced), the quality attributes and other architectural concerns are
captured. In this case, Figure 2 only mentions a few important concerns in a very informal way. The
different envisioned sub-systems will be provided as containers, which need to be deployed to a cloud
service. The whiteboard mentions a target availability of 99,999%, which needs to be guaranteed by
the cloud provider. Furthermore, the diagrams shows the envisioned life-time (TTL in the diagram)
for the different parts of the system. As no more concerns are mentioned, the team assumes typical
concerns for mobile and web application regarding performance, scalability, security and the like.

3.4.2 Specifications during an iteration. Specifications to continue development during an iter-
ation cycle should codify agreements made between individual team members or between multiple
teams working on the same larger application.

Examples of such specifications include, but are not limited to (RESTful) API specifications, data
models, user interface specifications, and (architectural) design decisions which need to be considered
by stakeholders other than the decision maker her or himself. Examples of such decisions are the
technological choices mentioned on the whiteboard shown in Figure 2. Of course, as this pattern con-
cerns continuous development, these specifications are continuously adjusted if required to serve the
aforementioned purpose.

As mentioned above, the specifications are not part of a single self-contained document. You should
rather create each specification artifact where it is either naturally used as part of the software de-
velopment process, or it is automatically generated and updated from something that is part of the
development process.

We show two examples that demonstrate this principle of a single source of truth. The first example
is an API specification in YAML. The second example concerns tests written with Cucumber7. Both
specifications are stored in a git repository.

Swagger.io8 is a tool for defining a REST API, including (required) input parameters, output param-
eters, types of parameters and descriptions. The description language of the API is provided in YAML
directly within the source code of the application. From this API specification in YAML, the tool gen-
erates code for testing or further development. Developers can always rely on this API specification as
it is the single source of truth. Figure 3 shows an example of swagger in use. So the code itself serves
as specification.

7https://cucumber.io/
8http://swagger.io/

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Specification in Continuous Software Development • 11

Uber API
[Base url: api.uber.com/v1]

Move your app forward with the Uber API

Schemes

HTTPS

Products

GET /products Product Types

Estimates

GET /estimates/price Price Estimates

GET /estimates/time Time Estimates

User

GET /me User Profile

GET /history User Activity

Models

{...}

{...}

{...}

{...}

{...}

{...}

 1.0.0

Product

PriceEstimate

Profile

Activity

Activities

Error

this is an example of the Uber API

as a demonstration of an API spec in YAML

swagger: '2.0'

info:

 title: Uber API

 description: Move your app forward with the Uber API

 version: "1.0.0"

the domain of the service

host: api.uber.com

array of all schemes that your API supports

schemes:

 - https

will be prefixed to all paths

basePath: /v1

produces:

 - application/json

paths:

 /products:

 get:

 summary: Product Types

 description: |

 The Products endpoint returns information about the *Uber*

ÊÊÊÊÊÊÊÊÊÊproducts

 offered at a given location. The response includes the display

ÊÊÊÊÊÊÊÊÊÊname

 and other details about each product, and lists the products in

ÊÊÊÊÊÊÊÊÊÊthe

 proper display order.

 parameters:

 - name: latitude

 in: query

 description: Latitude component of location.

 required: true

 type: number

 format: double

 - name: longitude

 in: query

 description: Longitude component of location.

 required: true

 type: number

 format: double

 tags:

 - Products

 responses:

 200:

 description: An array of products

 schema:

 type: array

 items:

 $ref: '#/definitions/Product'

 default:

 description: Unexpected error

 schema:

 $ref: '#/definitions/Error'

 /estimates/price:

 get:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

'2.0'

REST specifica�on

in YAML

Documenta�on and

Test console

Fig. 3: REST API definition with swagger.io

Another example for a tool using the same principle is Cucumber. Cucumber is a behavior-driven
development (BDD) [North et al. 2006] test tool. BDD was preceded by test-driven development (TDD)
[Beck 2003]. In these types of development, tests are the specifications for the development team.9 Cu-
cumber is used for behavior-driven development in automated acceptance tests. Typically, a team with
customers, developers and testers explore the area, each from it’s own perspective and competences.
After clearing up misunderstandings and explicating assumptions, this results in a set of specific ex-
amples that are typical for the problem domain. An example of a feature description in Cucumber is
shown in Figure 4.

The principles also apply for many other types of artifacts generated using specific tools (e.g. UML-
tools, database management systems, or UI-frameworks). Always strive for creating the specs in the
tool, which is also used for the development and do not duplicate artifacts. If however, no tool is avail-
able that automatically generates more readable versions of such specifications, then the source code
itself should be used as a specification.

A special role is taken by decisions made by developers during the iteration. Many of these decisions
are primarily relevant for the developer himself and do not necessarily need to be shared with other

9We focus on the test as specification and do not present merits and (dis)advantages of test-first development methods.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

12 • T. Theunissen, U. van Heesch

Fig. 4: Feature description in Cucumber for a Dutch train travel website

team members. Examples are decisions about design patterns (assuming they do not have architectural
implications) used, libraries that do not induce implications for modules developed by other developers,
or design principles applied by the developer to structure the code. Certain decisions, especially those
having architectural impact, should be specified and shared with relevant stakeholders. Candidates for
such decisions are architectural styles, patterns and tactics and other decisions that have a significant
impact on quality attributes and externally visible interfaces of the system. Not all of these decisions
must be documented though. Only document decisions that are non-obvious to the team and that
cannot be recovered from artifacts already created as part of the development process. Examples of
decisions that do not have to be documented per se are used frameworks and third part libraries, if
such information can be easily retrieved from a build file (e.g. a pom.xml file from Maven), for instance.
As a rule of thumb you should spend documentation effort primarily on decisions that were hard to
make, caused a lot of discussion, seem counter-intuitive, were significantly impacted by people external
to the team, and also on decisions which turned out to be not good after the implementation. One way
of documenting decisions in a lightweight manner is using specific architecture decisions views [van
Heesch et al. 2012a; 2012b].

Figure 5 shows an example of a decision-relationship-view [van Heesch et al. 2012a], which shows
relationships between decisions made and their status. A relationship view in combination with a
decision-forces view [van Heesch et al. 2012b]. Figure 6 captures sufficient information of decisions to
support the team during the iteration, in which the decisions are made.

Finally, as specification items are spread over multiple different locations, it is advisable to provide
an overview page which contains links to the diverse locations of the specification items. A natural
place for such an overview page is the team’s wiki. Note again that information should not be dupli-
cated on the wiki. Instead the wiki should contain links to locations that do not change frequently.
Otherwise the risk remains that the information on the overview page gets outdated quickly. Figure 7
shows an example of such an overview page created in Confluence.

3.4.3 Refactored specifications at the end of an iteration. At the end of an iteration, you should
revisit specifications created and updated during the iteration and decide explicitly on items relevant
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Specification in Continuous Software Development • 13

Fig. 5: Example of a decision relationship view

Fig. 6: Example of a decision forces view

for the next iterations. The process we propose here is roughly comparable to a refactoring process
for source code. It can be seen as a kind of specification refactoring. During this process, all artifacts
that exclusively serve documentation purposes are revisited and either kept unchanged, simplified, or
thrown away. Specification items that could be kept unchanged are documented decisions that are still
valid or an architectural vision that is still valid. Some specification artifacts can be simplified or made
more concise with the knowledge a developer gained during the iteration. Examples of artifacts that
can be thrown away are UML- or box-and-line diagrams of software parts that were fully implemented
in the meantime. In such cases, the code itself is often a better and more accurate specification of the
system than the diagrams could be. This is the same as the architecturally-evident coding style, used
by [Fairbanks 2010].

Proceedings of the 22nd European Conference on Pattern Languages of Programs

14 • T. Theunissen, U. van Heesch

Fig. 7: Overview page with links to specifications relevant during a specific iteration

Especially the documented decisions should be revisited as the status of decisions frequently changes
throughout an iteration. We suggest to cleanup the decision views and only keep those decisions that
are still in a decided state. Furthermore, important decisions or decisions that required long discus-
sions should be described in more detail, for instance using a decision detail view from [van Heesch
et al. 2012a]. This view is independent of a specific iteration. It should be up-to-date at the end of each
iteration.

Additionally, as iterations in agile or lean teams are often accompanied by one or more releases, spec-
ifications should cover a description of (automated) steps to test, deployment and operations. Again,
make use of the principles mentioned above. It is better to point to a provisioning script on a wiki,
rather than describing a deployment process verbally. Along with every release, the current state of
all documentation artifacts should be kept, e.g. to cope with situations, in which multiple versions of a
software are used by customers.

3.5 Consequences

In the following, we will discuss the consequences of applying the CONTINUOUS SOFTWARE DESIGN
SPECIFICATION pattern.

(1) Shaping thoughts The process of specifying contributes to a better understanding of the problem
and envisioned solution of an application. When applying the pattern, developers discuss the envi-

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Specification in Continuous Software Development • 15

sioned architecture of the system and the technological ecosystem typically using a whiteboard. The
whiteboard sketch only serves as a means to support the discussion. It is not meant as a documen-
tation. As a consequence, the whiteboard sketch becomes less and less useful the more time passes.
This effect is deliberately accepted here. The iteration start specifications are meant only to enable
a quick-start to the iteration and to support planning activities.

(2) Progressive insight At any time during the iteration, specifications are only created or updated
as part of the development process. New insights can always be considered. The pattern embraces
changes over following a plan.

(3) Specification gaps require assumptions to be made The solution described by this pattern
advocates a radical reduction of specifications to a minimum. Naturally, this causes specification
gaps which force the team members to either silently assume problem or solution-related aspects,
or to explicitly discuss them with their team members. As mentioned in the context section, this
can only work well if the team is experienced and has an established communication culture. There
is thus a correlation between the amount and detail of specifications needed and the experience
and skills of the development team. Likewise, this applies for hidden disagreement. Typically, agile
and lean process models address these problems by weaving regular retrospective sessions into
development iterations, in which the team -among other issues- also discusses their communication
and conflict-management strategies.

(4) Overestimated competences and underestimated complexity As a consequence of no big up-
front specification, the complexity of software problems and solutions is regularly underestimated.
The same holds true for the developers’ competences. Therefore, this pattern should only be applied
in teams using agile or lean principles, which rely on short iterations, review and retrospective ses-
sions. Hidden complexity is therefore typically discovered and discussed regularly and the team can
learn from previous mistakes and new insights.

(5) Time to market Using the pattern, the team does not spend effort on documentation that does
not provide an immediate benefit for the current iteration. It is thus beneficial for achieving shorter
release cycles and within this quicker time to market.

(6) Onboarding of new team members When applying this pattern, an offline preparation of new
team members is drastically hampered. This is not so problematic for new team members entering
an established team, as new team members can be brought slowly up to speed by taking part in
the regular team ceremonies and picking up simpler tasks in the beginning. For transferring an
application to an entirely new team, the specifications advocated by this pattern are not sufficient.
However, the information documented can serve as a basis for providing a more comprehensive
team transformation document which provides more detail on the architecture, important decisions
made and the overall design of major components.

4. OUTLOOK

This paper presents a first effort to describing specification processes for continuous software develop-
ment projects. The CONTINUOUS SOFTWARE DESIGN SPECIFICATION pattern can be applied in a con-
text where a team already built up specific knowledge and skills, e.g. about the development process
or the domain of an application. In the future, we plan to document another pattern that describes
how these necessary preconditions can be achieved by a development team. This pattern will cover
knowledge about technology, knowledge about processes and agreements that need to be made by a
team. This includes a way of dealing with tacit knowledge [Kruchten et al. 2006] the developers have.
Among others, the pattern to be documented will make use of templates, frameworks and libraries to

Proceedings of the 22nd European Conference on Pattern Languages of Programs

16 • T. Theunissen, U. van Heesch

enable continuous development. The processes, context and environment for this second pattern are
described in continuous development principles.

ACKNOWLEDGMENTS

We would like to thank our shepherd Uwe Zdun for his critical feedback and useful hints during the
shepherding process of EuroPLoP 2017. We would also like to thank Allan Kelly for doing an extensive
review of this paper after the conference.

REFERENCES

Scrum Alliance. 2017. What is Scrum? An Agile Framework for Completing Complex Projects-Scrum Alliance. (2017). https:
//www.scrumalliance.org/ (Retrieved April 21, 2017).

Atlassian. 2017. Visualise your Roadmap. https://www.atlassian.com/blog/archives/visualize-your-roadmap. (2017).
Kent Beck. 1999. Extreme programming explained: embrace change. (1999).
Kent Beck. 2003. Test-driven development: by example. Addison-Wesley Professional.
Frederick P Brooks Jr. 1995. The mythical man-month (anniversary ed.). (1995).
Daniel Cukier. 2013. DevOps patterns to scale web applications using cloud services. In Proceedings of the 2013 companion

publication for conference on Systems, programming, & applications: software for humanity. ACM, 143–152.
Floris Erich, Chintan Amrit, and Maya Daneva. 2014. Report: Devops literature review. (2014).
George Fairbanks. 2010. Just enough software architecture: a risk-driven approach. Marshall & Brainerd.
Martin Fowler and Jim Highsmith. 2001. The agile manifesto. (2001).
HP. 2016. Measuring DevOps success. How do you know DevOps is working? Watch the KPIs. https://www.hpe.com/h20195/v2/

GetPDF.aspx/4AA6-3036ENN.pdf. (August 2016). (Retrieved April 5, 2017).
Jez Humble and Joanne Molesky. 2011. Why enterprises must adopt DevOps to enable continuous delivery. Cutter IT Journal

24, 8 (2011), 6.
Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2006. Building Up and Reasoning About Architectural Knowledge. In

Quality of Software Architectures, Christine Hofmeister, Ivica Crnkovic, and Ralf Reussner (Eds.). Lecture Notes in Computer
Science, Vol. 4214. Springer Publishing Company, 43–58.

Justin Kruger and David Dunning. 1999. Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence
lead to inflated self-assessments. Journal of personality and social psychology 77, 6 (1999), 1121.

Christopher Lovelock and Evert Gummesson. 2004. Whither services marketing? In search of a new paradigm and fresh per-
spectives. Journal of service research 7, 1 (2004), 20–41.

Dan North and others. 2006. Introducing BDD. Better Software, March (2006).
Mary Poppendieck and Tom Poppendieck. 2003. Lean Software Development: An Agile Toolkit. Addison-Wesley Longman Pub-

lishing Co., Inc.
Theo Theunissen and Uwe van Heesch. 2016. The Disappearance of Technical Specifications in Web and Mobile Applications:

A Survey Among Professionals. In Software Architecture: 10th European Conference, ECSA 2016, Copenhagen, Denmark,
November 28–December 2, 2016, Proceedings 10. Springer, 265–273.

U van Heesch, P Avgeriou, and R Hilliard. 2012a. A documentation framework for architecture decisions. Journal of Systems
and Software 85, 4 (2012), 795–820.

U van Heesch, P Avgeriou, and R Hilliard. 2012b. Forces on Architecture Decisions - A Viewpoint. In Proceedings of the Joint
10th Working IEEE/IFIP Conference on Software Architecture & 6th European Conference on Software Architecture. IEEE,
xx—-xx.

Mandi Walls. 2013. Building a DevOps Culture. (2013).
R Wilsenach. 2016. DevOps Culture. Saatavissa (viitattu 23.4. 216): http://martinfowler. com/bliki/DevOpsCulture. html

(2016).

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Appendices
A. PRINCIPLES OF CONTINUOUS SOFTWARE DEVELOPMENT AND LEAN, AGILE AND DEVOPS

18 •

Proceedings of the 22nd European Conference on Pattern Languages of Programs

• 19

Proceedings of the 22nd European Conference on Pattern Languages of Programs

